D.2) Thin Sample.

When the sample is thin, it is more convenient to write the resistivity in the form given by Smits (e):

$$Q = G_{\overline{1}}^{V}$$
, where

$$G = \frac{\pi}{\ln 2} \cdot t \cdot T_2(\frac{t}{s}) = 4.5324 \cdot t \cdot T_2(\frac{t}{s}); \qquad (11)$$

 $\frac{\pi}{\ln 2}$ ·t = 4.5324·t is the geometric factor for an infinite-ly large, thin slice (e). Thin slice means $\frac{t}{s} \ll 1$ (in practice $\frac{t}{s} \leq 0.5$).

 T_2 is an additional correction factor to apply when t is not much less than s.

$$T_2 \rightarrow 1$$
 as $\frac{t}{s} \rightarrow 0$.

 $T_2(\frac{t}{s})$ is tabulated and plotted on the following page.