When measuring alternately in the center and at a distance from the periferi of the slices, a different presentation of the geometric factor is convenient: We write:

\[Q = G \frac{V}{I}, \]

\[G = \frac{\pi}{\ln^2} \cdot t \cdot K_3\left(\frac{L}{S}, \frac{d}{S}\right) = \frac{\pi}{\ln^2} \cdot C_0\left(\frac{d}{S}\right) \cdot K_4\left(\frac{L}{S}, \frac{d}{S}\right) \]

where

\[\frac{\pi}{\ln^2} \cdot C_0\left(\frac{d}{S}\right) \cdot t \] is the geometric factor when measuring in the center of a circular slice of diameter \(d \) and thickness \(t < \frac{S}{2} \) (see section I.1), and \(K_4\left(\frac{L}{S}, \frac{d}{S}\right) \) is the additional correction to apply when measuring at a distance \(L \) from the periferi of the slice. \(K_4\left(\frac{L}{S}, \frac{d}{S}\right) \) is tabulated below and plotted at page 52.